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A dynamic system is considered that consists of two fluids with densities Pl and @2 < 
Pl moving in plane-parallel motion above a horizontal bottom at the constant velocities 
u I and u 2 at the depths H~ and H 2 (the subscript 1 refers to the lower and 2 to the upper 
layer). There is an interlayer with the characteristic thickness 6 << H I, H 2 in the zone 
of fluid contact in which the density and velocity change smoothly from one constant value 
to the other. According to the criterion [i] 

(g is the acceleration of gravity) the system is considered stable. The question of whether 
waves generated translationally by a moving cylinder can become unstable therein is clari- 
fied experimentally. For the sequel it is possible to take Ri, = 0.25 since refinements of 
this quantity [i] for Ri values utilized in tests are insubstantial. 

At this time there is a large number of theoretical papers (sufficiently complete 
information thereon can be found in [1-5]) predicting the possibility of a loss of stabilty 
for other reasons than which has been reflected in the mentioned criterion. Even small 
perturbations described by linear theory can, say, lose stability because of the existence 
of negative energy in the wave system [5]. The possibility of the loss of stability under 
the action of finite amplitude perturbations increases significantly [2]. Out of the experi- 
mental stability investigations for stratified liquid shear flows executed earlier, [2, 4, 
6] can be noted as being closest to the present paper. 

Tests were performed in an installation whose diagram is presented in Fig. I. It 
was a 5 m long, 0.2 m wide, and 0.6 m high channel with a horizontal bottom and organic 
glass walls. First a solution of glycerine in water with the density px = 1.013 g/cm 3 and 
viscosity vl = 0.0118 cm2/sec was poured into the channel. Then distilled water with P2 = 
1 g/cm ~ and ~2 = 0.0105 cm2/sec was slowly poured through porolon filters floating on the 
surface. The upper layer was later set into motion by a propeller pump at the velocity 
u 2. The velocity of the lower layer could be considered zero with good accuracy (See Fig. 
2). 

A perforated tube, a gravel filter 1 and a horizontal plate 2 arranged slightly above 
the interface boundary were used to equilibrate the stream at the entrance to the channel 
working section. A plate 7 bent backward from below, two meshes 5, and a cylindrical fair- 
ing 6 were installed at the channel exit. All this assured homogeneity of the flow in the 
longitudinal direction with variations in u 2 of not more than 5% per 1 m of length and a 
level of uncontrollable perturbations for which visually distinguishable waves appeared 
at the interfacial boundary only for Ri < 0.8 (compare [6]). 

The velocity profile u(y) in the coordinate system displayed in Fig. 1 is determined 
from trajectories of particles of about 1 mm in size fabricated from a mixture of rosin 
and paraffin. The particle trajectories were recorded by a movie camera and the velocity 
was calculated by the increment in the coordinate Ax in a known time &t. A correction was 
introduced for optical distortions during filming. The velocity profile used later is pre-. 
sented in Fig. 2. Each experimental point is obtained by taking the average over ten parti- 
cles, and the horizontal segments indicate the intervals in which the results of measurements 
taken individually were located. The ordinate of the free surface is marked by a triangle. 
The density was determined by suspension of specimens taken from the points under consideration 
by using a medicine dropper with 0.2 mm hole diameter. The density profile used later is 
presented in Fig. 2 (line 2). 
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Fig. 2 
By using trolley 3 the cylinder 4 of D = 2 cm diameter was moved perpendicularly to 

its axis along the trajectory y = h = const at the velocity 

/Uo[l--exp(--t/T1) ] for O < t < T ,  
U = (U ~ exp (-- t/'c2) for t >~ T, 

where t is the time and U0, ~l, ~2 and T are constants. Here ~z, ~2 were of the order of 
magnitude of 0.2 sec while T varied between the limits 15-150 sec so that the cylinder tra- 
versed its trajectory almost entirely within the uniform motion mode. 

Studied in the tests was the behavior of that equal-density surface P0 = const, P2 < 
P0 < Pl that would appear in the photographs as a sharp boudnary between light and dark 
images during filming with the lower layer colored by ink. In the unperturbed state the 
location of this surface corresponds to the value y = 0 in Fig. 2. Both the main flow and 
the waves generated by the cylinder were considered stable if the mentioned boundary remained 
smooth during visual observation and on the photographs. Either at least partial destruction 
of the waves or fluid mixing between the layers was the criterion for loss of stability. 

The system parameters e = 0.013, 6/H I = 0.08 and ~/H 2 = 0.i did not vary in the tests 
while the parameter Ri took on two values Ri = 3.1 exceeding Ri, by 12.4 times, and Ri + 
(the case of layers at rest in the unperturbed state). The 6 entering in these parameters 
is defined as the distance between the points at which the tangent to the profile p(y) inter-, 
sects the lines p = ~ and p = P2 at p = ~. The most substantial perturbation parameters 
varied within the ranges 2 ~ Jh/DJ ! 6, 0 ~ Fr = (2 + E)U~/eKR ! 81, 400 ! Re = U~D/v 2 ! 
4000. Therein R = D/2, U= = Iu0J during cylinder motion in the lower layer and U~ = JU0i 
u2J in the upper. The sign of the parameter u2/U 0 is also of importance in the shear flow; 
under definite conditions stable waves become unstable for just one change in the sign of 
this parameter. 

The moving cylinder induces perturbations of two kinds. On the one hand, the fluid 
particles while flowing over it acquire vertical accelerations resulting in the occurrence 
of regular internal waves in the stratified medium. On the other, a hydrodynamic wake is 
formed behind the cylinder which was entirely turbulent for the Re values considered in 
the tests although quite definite ordered (coherent) structures also existed therein. The 
wake can cause fluid mixing between the layers upon reaching the interfacial boundary. In 
these tests such a pattern was observed for Ri + ~, h/D = 4, Fr = 81, say at distances from 
the cylinder exceeding two hundred of its diameters. Indirectly the wake also induces 
a wave-type contribution to the perturbation, magnifying it [7]. 
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A s e p a r a t e  s t u d y  of  t h e  s y s t e m  r e a c t i o n ' t o  t h e  p e r t u r b a t i o n s  o f  t h e  two k i n d s  m e n t i o n e d  
t u r n e d  ou t  t o  be p o s s i b l e  b e c a u s e  domains  o f  v a l u e s  o f  R i ,  h/D and Fr e x i s t  where e i t h e r  
one o r  t h e  o t h e r  p r e d o m i n a t e s .  Thus ,  f o r  t h e  c o n s i d e r e d  Ri and h/D t h e  d i r e c t  i n f l u e n c e  
o f  t h e  wake was f e l t  o n l y  f o r  Fr  > 50, w h i l e  t h e  s i g n - v a r y i n g  waves e x c i t e d  by t h e  c y l i n d e r  
i t s e l f  became n e g l i g i b l y  s m a l l  in  t h e  zone o f  wake emergence  on t h e  i n t e r f a c i a l  bounda ry  
f o r  Fr  > 20.  The r e s u l t s  o f  t h o s e  t e s t s  in  which t h e  w a v e - t y p e  p e r t u r b a t i o n s  p r e d o m i n a t e d  
w i l l  be d i s c u s s e d  in  g r e a t e r  d e t a i l  l a t e r .  

Waves f rom t h e  c y l i n d e r  a r e  s t a b l e  in  t h e  f l u i d  a t  r e s t  (Ri  ~ ~) in  t h e  whole  r a n g e  
o f  p a r a m e t e r s .  The h i g h e s t  v a l u e  o f  t h e  p a r a m e t e r  g = 2~a/X, c h a r a c t e r i z i n g  t h e  wave s t e e p -  
n e s s  a c c o r d i n g  t o  [ 2 ] ,  r e a c h e d  0 .3  (a  i s  t h e  a m p l i t u d e  and X t h e  w a v e l e n g t h ) .  Compu ta t i ons  
on t h e  b a s i s  o f  a n o n l i n e a r  m a t h e m a t i c a l  model  [2] c o n f i r m  t h e  p o s s i b i l i t y  o f  t h e  e x i s t e n c e  
o f  s t a b l e  waves o f  such  s i g n i f i c a n t  s t e e p n e s s  in  a f l u i d  a t  r e s t .  

In a shear flow with Ri = 3.1 wave-type perturbations are stable for all Fr if lh/Dl > 
5. In the 2 < lh/Dl < 4 range both stable and unstable waves are observed. An example 
of the stable-waves being formed for h/D = 3, Fr = 3.37, U 0 = -4.62 cm/sec is presented 
in Fig. 3a ($ = 0.19), where the free surface is denoted by the triangle, and the spacing 
between divisions of the coordinate grid is 20 cm along the horizontal and i0 cm along the 
vertical. 

Unstable wave-type perturbations being observed for Ri = 3.1, h/D = 2, Fr = 0.7, 
U 0 = -2.11 cm/sec are shown in Fig. 3b. Intense vortices that absorb almost all the pertur- 
bation energy are formed in the wave troughs in this mode. As h/D increases the relative 
fraction of perturbatior energy going over into the regular waves increases continuously 
so that the waves become stable for h/D > 5. 

Still another example of wave-type perturbation instability being observed during 
cylinder motion in the lower layer in the direction u 2 (Ri = 3.1, h/D = -3, Fr = 2.43, U 0 
= 3.92 cm/sec) is presented in Fig. 3c. In this mode the wave destruction occurred on its 
trailing front. 

The question of whether the wave-type perturbation instability is associated with 
some singularities of the operator of the system under consideration, particularly, its 
linear operator, is legitimate. An important characteristic of the linear operator is the 
dispersion relation ~(k) (~ is the circular frequency and k is the wave number). For a 
shear flow that differs somewhat from the velocity profile under consideration, an analy- 
sis of the dispersion relation is executed in [5]. The dispersion relation for the first 
slow mode in the system being studied is presented in Fig. 4. It is valid for inviscid 
fluids. The correction for the influence of viscosity can be introduced by means of formu= 
las from [8]. Analysis showed that this correction is substantial for large k while it 
did not exceed 5% for the modes realized. The fragment a in Fig. 4 contains the domain 
of small values of k in a larger scale. The influence of the fact that the layers in the 
tests were of finite depth is felt in this domain. 

There is a number of characteristic points on the dispersion curve presented. The 
phase velocity c = ~/k at the point 0 (the origin) equals the group velocity c, = d~/dk 
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and the limit velocity of infinitesimal sinusoidal wave propagation in a system with finite 
+ and Cm (in tests layer depth, while in the presence of velocity shear it takes on two values c m 

c~ = 13.9 cm/sec and c~ = -10.7 cm/sec). Only conoidal, solitary, intermittent waves and 
smooth bora which linear theory does not describe can be propagated at a velocity exceeding 
the limit in the system under consideration. 

At the point 5 the group velocity becomes infinite and unstable according to the Kelvin-- 
Helmholtz mechanism. The phase velocity lies between u I and u 2 on the arc of the dispersion 
curve 3-5-7. Critical layers through which small perturbations do not pass in practice 
exist in the diffused zone for perturbations with phase velocities from this range. 

For the sequel, the point pairs 4, 8 and I, 6 in which the group velocity equals u I 
(zero in the selected coordinate system) and u2, respectively, are of special interest. 
It is interesting to note the definite symmetry in the arrangement of the eight points marked. 
If points corresponding to the mentioned singularities in the group velocity are excluded, 
then this symmetry is spoiled. 

To make a judgement about precisely what stationary waves are excited in the system 
by a given perturbation, the characteristics of this perturbation must be constructed in 
the domain (~, k). The equation of the~characteristic is m, = U0k for translational cylinder 
motion. The point of its intersection with the dispersion curve in Fig. 4 governs the length, 
frequency, phase and group velocities of the first slow-mode waves excited by a cylinder. 
Three lines ~,(k) corresponding to illustrations in Fig. 3 are drawn in Fig. 4. 

The line 08 passes exactly through the singular point 8 of the dispersion curve and 
an intensive process of loss of stability illustrated in Fig. 3b is observed. The line 
02 intersects the dispersion curve on the section between the singular points 1 and 4 near 
the point i. In this case the instability illustrated in Fig. 3c also holds. The 
line 09 intersects the dispersion curve outside the intervals in which c or c~. lie between 
u I and u 2 and the waves generated by the cylinder are stable even for large $ (Fig. 3a). 

Therefore, waves from a cylinder in a shear flow can be destroyed even in the case 
when the main flow is stable according to linear theory. The predisposition to destruction 
is governed here not only by the wave steepness but also by what domain of parameters deter- 
mined by the dispersion relation their excitation occurs in. In addition to the known 
information about the singularities of wave behavior in the domain where their phase veloc- 
ity lies between the upper and lower layer velocities, attention should be turned to the 
elevated instability of the wave perturbations induced by the cylinder under conditions 
when their group velocity lies between the upper and lower layer velocities. 

The author is grateful to A. V. Gusev and E. F. Vedernikov for the main contribution 
to the realization of the test program. 
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